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SUMMARY 
The turbulent momentum transport phenomena in a two-dimensional mixing layer are investigated 
numerically by a discrete vortex method. The numerical model and calculations are verified through a 
comparison with existing numerical simulations and experimental measurements. The main emphasis is 
placed on the exploration of the detailed time-dependent instantaneous local momentum fluctuations and on 
the comparison of numerical results with available experimental measurements. The current simulations 
confirm qualitatively the various trends in the turbulent momentum flux and fluctuating components of the 
velocity in the mixing layer found with several experimental results. The study shows that similarity exists in 
turbulent momentum quantities along the axial direction of the mixing layer. The calculations also show a 
definite correlation between the passage of a large-scale structure and a burst in the turbulent momentum 
flux. The probability density functions of the fluctuating quantities are shown to be mostly Gaussian-like, 
with only a few exceptions. 
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INTRODUCTION 

Large-scale structures have been clearly identified by numerous investigators in free shear flows 
such as plane mixing layers, jets and wakes. For the plane mixing layer which is formed by the 
merging of two parallel flow streams of different speeds, a quasi-two-dimensional large vortex 
structure has been identified as the dominant flow component. It is suggested through a flow 
visualization study that the major dynamical feature of a mixing layer is composed of the 
formation and interaction of two-dimensional vortex structures. The interaction process between 
large-scale structures as they rotate around each other and then coalesce into a single larger vortex 
was termed the ‘vortex pairing’ process by Winant and Browand.’ They also consider vortex 
pairing as the dominant mechanism in the development of the flow field. 

It is known that the turbulence in a shear flow can only be maintained by a continuous supply of 
momentum from the free stream fluids. In the case of a mixing layer, the turbulence is then 
maintained by a continuous influx of high-momentum fluid into the layer from the free stream of 
the high-speed side and a corresponding flux of low-momentum fluid from the low-speed side. 
Owing to the domination of large-scale structures in the momentum transport, it is important to 
understand how these large structures affect the momentum transport process and the corre- 
sponding turbulent fluctuation of velocity components. Experimentally, the characteristics of the 
two fluctuating velocity components were reported by Lau and Fisher,’ who showed a 
predominance of spikes in hot-wire signals for the mixing layer region of a round jet. They also 
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argued that these spikes are caused by an axial array of fairly evenly spaced vortices moving 
downstream in the mixing layer region. The momentum flux was not reported in their study. 

In order to demonstrate the existence of large-scale structures, Browand and Ho3 measured the 
time history of the momentum flux along with two fluctuation velocity components across the 
mixing layer at a downstream location. They observed that the time history of the momentum flux 
has a series of infrequent large-amplitude spikes at the vertical locations away from the centre of 
the mixing layer, while relatively small-amplitude fluctuations were observed at the vertical 
locations closer to the centre of the mixing layer. Besides these large-amplitude spikes, the entire 
history contains a series of bursts of duration comparable to the passage period of large-scale 
structures. Browand and Ho also concluded that the amplitude of the bursts is independent of the 
vertical position in the mixing layer and the signs of the two fluctuation velocity components are 
correlated over large areas of the mixing layer. The momentum fluxes which contribute 
significantly to the Reynolds stress (long-time averaged turbulent momentum flux) are thought to 
be due to those bursts observed in the time history of the momentum flux. 

The numerical simulation of a two-dimensional mixing layer by discrete vortices has been 
successfully demonstrated and has yielded results comparable with experimental  observation^.^. 
Several different approaches have also been employed to simulate the flow In general, the 
formation and the mutual interaction of large-scale structures can be well approximated by 
discrete vortex simulations. Almost all the discrete vortex simulations in the past have been 
devoted to the study of the global features in turbulent mixing layers. In this paper we apply the 
discrete vortex method for the simulation of a two-dimensional plane mixing layer. In addition to 
the global features, we place major emphasis on the microscopic features of a mixing layer such as 
local instantaneous turbulent momentum fluxes and instantaneous turbulent fluctuating velocity 
components, which have not been investigated previously. 

SIMULATION O F  MIXING LAYER BY DISCRETE VORTICES 

Flow simulation by discrete vortices was first introduced by Rosenhead.' All the discrete vortex 
methods that followed contain the basic principles developed by Rosenhead, but each carries its 
own variations when it comes to satisfying the boundary conditions and to conforming to the 
specific system geometries. Several discrete vortex simulations have appeared in the literature for 
two-dimensional turbulent mixing layers. Details of the flow simulation by discrete vortices in the 
paper are given below. 

As shown in Figure 1, the entire field is composed of two sections. The first section, 
corresponding to the flows above and below the splitter plate, is represented by a vortex sheet of 
strength Au per unit length. Au is defined as 

Figure 1 .  Schematic of flow field and definitions 
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where u1 is the free stream velocity of the top flow and u2 is that of the bottom flow. In the discrete 
vortex approximation, the vortex sheet is simulated by an array of equal-strength discrete vortices, 
each of which has strength r given by 

where 1 is the equal spacing between any adjacent vortices. The constant convective velocity of 
these vortices, u,, is given by 

uc=)(ul +u,) .  (3) 

The time step in the numerical simulation is chosen such that each vortex moves a distance I in one 
time step At; therefore 

At = l /uc .  (4) 
In the current simulation all the velocities and lengths are non-dimensionalized by a unit 

velocity ii and a unit length scale L. 7 ,  the dimensionless time, is defined as tk/L.  Note that there is 
no apparent length scale in a plane mixing layer. 

The second section of the flow field corresponds to the downstream of the splitter plate, i.e. the 
mixing layer, which is formed by the vortices shed from the splitter plate. Thus at the beginning of 
each time step at X =O one vortex leaves the vortex sheet array of the first section and joins the 
mixing layer. Once in the mixing layer, the nth vortex moves with a dimensionless velocity 
V,, =(U,,, V,). V,, is the summation of all the velocities induced at  the dimensionless centre position 
of this nth vortex, (Xn, Yn), by all other vortices in the system, plus its own dimensionless 
convection velocity U,. In terms of the complex potential W(Z), we may define 

u,-iv,,=awlaz, Z=X+iY,  ( 5 )  

and 

In the above equation the first term on the right-hand side is the contribution from all the vortices 
in the first section of the vortex sheet. Nb is the total number of vortices that represent the vortex 
sheet; in this analysis Nb is equal to 600. Nb was determined based on trial and error, and it was 
found that any larger Nb did not change the results significantly. Z,, represents the location of the 
ith vortex in the sheet array. The second term is the self-induced convective velocity potential. The 
third term represents the induced velocity potential from vortices in the second section, where N is 
the total number of vortices in the second section of the flow field. The movement of vortices in the 
mixing layer is determined by 

dX,,/dt = U,,, d YJdz = V,. (7) 

If (Xi,  Yi) is the position of the nth vortex at the kth time step, then its location at the (k + 1)th time 
step, ( X i + ' ,  Yt+l), is calculated based on the first-order Euler method as follows: 

X ; " = X ; + U , ( X i ,  Y:)A7, Y;+ ' = Y i  + Y,,(X:, Y ~ ) A T ,  (81 
where AT is the dimensionless time step. The reason for adopting the first-order Euler method is 
explained by Inoue? the turbulent viscosity may be approximated by the numerical integration 
error in Euler's method. 
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RESULTS AND DISCUSSION 

Flow field development 

The input parameters used in the simulation are as follows: 

where U ,  and U2 are dimensionless velocities of u1 and u2 respectively. As indicated in equation 
(6), very large velocities are induced at each other's positions when two vortices get close to each 
other. These large induced velocities do not exist in realistic flows because of viscosity effects. In 
the inviscid discrete vortex approach, Choring suggested a concept of vortex blobs with finite core 
size. Following Chorin, each vortex in the mixing layer is given the following stream function: 

where I is the distance from the centre of the vortex blob and u is the cut-off radius, which is 
analogous to the introduction of a small viscosity to allow the vorticity of a vortex blob to diffuse. 
Note that the introduction of a cut-off radius does not affect the induced velocity outside the cut- 
off range. We have found that if u is relatively small, the flow calculation is not sensitive to the 
choice of u. In the current analysis u is equal to 0.61. 

At the start of the mixing layer development the flow is similar to that oof a vortex sheet during 
roll-up. As a result, a leading large swirl of concentrated vortices is formed. This leading large 
vortex structure moves downstream at a relatively constant velocity approximately equal to U,. It 
is found that the influence of the leading roll-up structure on the subsequent development of the 
mixing layer between X = 0 and X = 200 is negligible when z > 120. After that the mixing layer of 
interest (0 < X < 200) is considered fully developed and quasi-steady because the similarity of the 
mean velocity profile has been established. 

In Figure 2 the development of the mixing layer in time is shown at a constant interval of time. 
The dashed lines are used to indicate the locations of a vortex structure at two different times. 
When two dashed lines converge, it means that the two structures have merged into a single but 
larger vortex structure. This is the so-called 'pairing' process described by Winant and Browand. 
Figure 2 is also similar to the x-t diagram in the study of Roshko." It is plausible to assume that 
there are three distinct regions in the fully developed mixing layer. Immediately following the start 
of the mixing layer ( X  =0) and up to about X = 60 we have the region of the onset of non-linear 
instabilities and transition to turbulence. Between X = 60 and X = 90 clusters of vortices are 
formed by the roll-up of vortices and the break-up of the roll-up vortex structures from the 
unstable vortex sheet. In the third region clusters are interacting with neighbouring structures. 
They first rotate around each other and then gradually merge to form a single larger vortex 
structure and lose their individual identities. We may call this region the pairing region. After the 
primary pairing, further pairing between these larger vortex structures formed from the primary 
pairing will create even larger or secondary vortex structures. This process may repeat itself 
further downstream, but in actual flows the three-dimensional disturbance stretching effect will set 
in and the ordered large-scale structures will cease to exist. The current study is centred on the 
mixing layer region where the two-dimensional larger-scale vortex structures are dominant. 
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'"1 t=180 

I 

Figure 2. Development of flow field at different stages. Dashed lines are used to follow the movements of large-scale 
structures 

Long-time-averaged velocity profiles 

The time-averaged profiles of the dimensionless velocity 0, dimensionless x-component 
turbulent intensity u' and y-component d, and the Reynolds stress - Ufi are shown in Figure 3. For 
comparison with the experimental measurements, the mean velocity 0 is normalized by the free 
stream velocity on the low-speed side and the velocity difference AW, turbulent intensities are 
normalized by AU, and the Reynolds stress is normalized by The vertical position across 
the mixing layer is represented by the similarity variable 

Y -  Y0.5 
x-xo  ' q=- 

where Yo.5 is the position where the velocity 0 is equal to U,  and X,, is the origin of the mixing 
layer, which is assumed to be zero in the present simulation. In Figure 3 the self-preservations of 
all quantities are clearly shown by overlapping the profiles at  three downstream locations. As 
mentioned previously, the large-scale structures and the mixing layer become fully developed after 
t = 120. The time-averaged period is thus taken over lo00 steps starting from t = 140 rather than 
120 in order to be sure that the results represent a statistically steady mixing layer. 

The present calculations of the time-averaged quantities are compared with the experimental 
results of Oster and Wygnanski" and with the numerical calculations of Inoue6 for the particular 
velocity ratio a =0.6 and for I z  =0-25. It is seen that the mean velocity 0 is in good agreement with 
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Figure 3. Time-averaged quantities of the flow field. (a) Velocity in streamwise direction. (b) Turbulent intensity in 
streamwise direction. (c) Turbulent intensity in lateral direction. (d) Reynolds stress 

Table I. Comparisons of turbulent intensities and Reynolds 
stresses 

Present Oster and 
result Inoue' Wygnanski' I 

M 
1 

0.6 0.6 0 6  
0.25 0.25 025  

@'/A u ),a, 0.258 0.305 0.180 

-Uii/(AU)2,,, 0.028 0.027 00127 
( ~ ' / A ~ ) m s x  0.225 0.250 0150 

the experimental measurements. For the turbulent quantities u', u' and -60 the comparisons are 
made by tabulating the maximum values of the profiles in TableI. Both calculations give 
approximately the same results. The small difference may be a result of the different numbers of 
vortices used to represent the splitter plate section. The calculated results are about twice as larger 
as the experimental measurements. Moreover, all other numerical simulations by discrete vortex 
methods for various flows geometries (e.g. Acton" for free jet) have also reported larger turbulent 
intensity and Reynolds stress. We believe that the overpredictions are due to the neglect of small- 
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scale structures and conditions in the experiment that are not addressed in the numerical model; 
for example, the confining walls of the wind tunnel. 

The momentum thickness or local integral thickness of a shear layer is usually reported in 
experimental measurements. In the current simulation this is calculated according to the equation 

The result for momentum thickness as a function of downstream location is shown in Figure 4. 
For the slope of the momentum thickness curve it is found that the current prediction is larger 
than the experimental result of Oster and Wygnanski" by 15% with the same input parameters. 
In the study of Browand and TrouttI3 it was shown that the linear growth of a mixing layer may 
be fitted by a line with slope 

dO(X)/dX = c1 a (13) 

dS,(X)/dX = c2a ,  (14) 

or, in terms of the vorticity thickness a,, 

where c1 ~ 0 . 0 3 4  and c2 =0.17 were given by Browand and Latigo.I4 In our calculation c1 and c2 
are found to be 0.030 and 0.15 respectively, which are close to the experimental measurements of 
Browand and Troutt.I3 

Characteristics of instantaneous velocity projiles 

As pointed out by Acton" in her study of an axisymmetric jet, a possible method to detect the 
presence of large eddies (large-scale structures) is to study the instantaneous velocity profiles 
throughout the flow field of interest. She noticed that there is always a distinct trough in the local 
instantaneous radial velocity just before the arrival of a large eddy and crest after its passage. This 
phenomenon can be shown rather easily by numerical simulation but not in experimental 
measurements, since one has to place many probes throughout the flow field. Since the mixing 
layer grows almost linearly in the cross-stream direction, one has to select numerical sampling 
points at which the large-scale structures can be sensitively detected and which are also out of the 
rotational portion of the mixing layer. Thus instead of using Acton's approach, which specifies 
calculation points along a line parallel to the axis of a developing jet, we adopt the idea of 
Browand and Ho3 who suggested that calculation points along a line Y/O = 6-8 emanating from 
the origin of the mixing layer will meet the two criteria described above. 

I ' - x  
120 140 160 180 2M) 

Figure 4. Momentum thickness as a function of downstream distance 
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In the current calculation we specify calculation points along the line Y/8=6. The in- 
stantaneous velocities U and V and their product UV, normalized by the free stream velocity 
difference AU, are shown in Figure 5 for three different stages of flow development. The dashed 
lines are drawn according to the positions of large-scale structures. It is found that there are no 
variations in any of the quantities plotted between X = 0 and 55, which corresponds to the non- 
linear instability region of the mixing layer. Downstream of this region between X = 55 and 90, 
large-scale structures start to form and create strong velocity fluctuations. This is the cluster 
region described earlier. A more regular variation is observed in the ‘vortex pairing’ region. On 
examining the fluctuation of the V-component, we find a steep drop from a local peak value to a 
local minimum before and after the passage of a large-scale structure. The relatively smoother 
trough-crest sequence seen in the jet simulation of Acton” was not found in the current mixing 
layer simulation. It is thought that in an axisymmetric jet the same results may be obtained if the 
calculation points are specified along the outer edge of the jet mixing layer. The pattern of 
fluctuation of the velocity product U V  is similar to that of the V-component since U is always 
positive. In the current calculations the vortex pairing does not produce any pattern of 
fluctuations. The same conclusion was also reached by Acton” for a jet. There is also no definite 
correlation between the variations of U and V. In general, it is noticed that a steep drop in V 
usually corresponds to a spike in U.  From the above results we may infer that if a probe is located 

0 . 4  - 
$ ::: 

-0 .1  

- 0 . 4  

3.04 ; I l l ,  I I 
1 . 8 -  

1 . 8 -  

¶ . 4 *  

1 . 0 -  

I . 8  - 
3 . 4 -  

3 . 1 -  

o 10 4 0  80 80 100 ( 1 0  1 4 0  1 8 0  1 8 0  2 0 0  

X 

Figure 5. Instantaneous velocities measured along Y/ll=6 at different stages. Dashed lines indicate the positions of large- 
scale structures. (a) T = 180. (b) z = 190. (c) T =220 
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at a point in the mixing layer, when large-scale structures pass underneath the probe they will 
produce a signal pattern similar to those in Figure 5. This finding therefore suggests a useful 
method of monitoring the movement of large-scale structures. 

Dynamic Juctuations of turbulent flow in the mixing layer 

To facilitate the discussion, the instantaneous dimensionless velocity components are represen- 
ted by the traditional combination of a time-independent mean quantity and a fluctuating part: 

u=u+u, v= v+u, (15) 

where (u, v) are the time-averaged mean velocity components and (u, v) are the corresponding 
fluctuating velocities. In order to perform a direct comparison with the experimental measure- 
ments of Browand and H o , ~  the numerical probes are located in the mixing layer as shown in 
Figure 6. Three downstream locations, X = 120,140 and 160, were chosen for the detailed velocity 
calculations. As indicated in Figure 6, five cross-stream points at each downstream location were 
selected as the sampling points in the mixing layer. These cross-stream points were determined 
based on the idea that the two outside ones are set up to examine the flows near the upper and 
lower boundaries of the mixing layers, while the three inside points are intended to study the flow 
in the mid-section of the mixing layer. The symbol y ,  represents a lateral location y that has a 
dimensionless mean veiocity y defined as 

2 ( U ( Y ) - U , )  ’= AU 

- 0 -  

-.o 

- 2 0  

- S O  

0 Z O  .o .o .O 100 * f O  3 4 0  1.0 q . 0  Z O O  

x 

Figure 6. Cross-stream locations y y  at three downstream locations where the time histories of fluctuating velocities and 
momentum flux are recorded 
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Therefore yo corresponds to the lateral location where the mean velocity is U , .  A negative y means 
that the lateral point is on the low-speed side of the mixing layer and a positive y corresponds to a 
location on the high-speed side. 

The other point we need to consider is the starting time at which the comparison begins in the 
numerical simulation. In the numerical simulation a substantial amount of computing time is 
needed for the flow field to establish itself to the point of being fully developed such that, for 
example, the time-averaged mean velocity is no longer time-dependent. This time was found to be 
around z = 120 as mentioned above. Thus for all the numerical results used in the comparisons 
with the experimental measurements, a new time scale Tis used, T= 0 corresponding to z = 120. In 
order to be consistent with the dimensionless quantities reported in Browand and H o , ~  the 
turbulent momentum -uu and the fluctuation velocities u and u are normalized by their 
corresponding root-mean-square values, - u'u', u' and u' respectively. The time histories of these 
dimensionless quantities for over 1000 time steps at three downstream locations were recorded. 
Qualitatively speaking, the fluctuating patterns at these downstream locations all show similar 
trends. Typical outputs are shown in Figure 7 for X =  160. Results were also obtained for X =  140 
and 180, but since they are very similar, only results for X =  160 are shown in this paper. 

Next we will compare the results in Figure 7 directly with those experimental results in 
Figure 12 of Browand and Ho3 for a single downstream location. First, the significant discovery 
by Browand and Ho, that at the outer extremities of the mixing layer the bulk of the turbulent 
momentum flux -uu appears to be constructed from a series of infrequent large-amplitude 
fluctuations, is confirmed in the numerical simulation. The magnitude of the momentum flux 
during these occurrences can be 30-50 times larger than the time-averaged Reynolds stress as 
measured in the experiments of Browand and Ho. The same magnitude (- uu/( - u'u') - 30-50) is 
seen in our numerical simulation. In line with the experimental observation of Browand and Ho, 
the duration of these bursts calculated in the simulation ranges from a fraction of the average 
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Figure 7. Time histories of momentum flux - uu and turbulent fluctuations u and u, normalized by the product -u'u' and 
turbulent intensities u' and u' respectively. (a) X =  160, y-o.so. (b) X=160, Y - ~ . ~ , .  (c) X=160, yo. (d) X=160, yo.5s. 
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passage period of large-scale structures to as much as a whole passage period. Also consistent with 
experiment is that on the low-speed side of the mixing layer these large flux contributions arise 
almost exclusively from high-momentum fluid transported downward from the high-speed side of 
the mixing layer, as the negative u dominates in those periods. There is a qualitative similarity in 
the fluctuating quantities across the lower half of the mixing layer (see e.g. Figures 7(a) and 7(b)); 
this trend was also seen in the experiments. On the high-speed side the current numerical 
simulation predicts similar patterns to those of Browand and Ho, with only minor exceptions. In 
the numerical simulation it is seen that the large-momentum fluxes are composed of low- 
momentum fluid transported upward from the low-speed side, which was also found in the 
experiments of Browand and Ho. The other trend demonstrated by the numerical simulation is 
that it seems that the high-amplitude fluctuation activities of the two sides of the mixing layer are 
out of phase with each other. For example, in Figures 7(a) and 7(e) the fluctuations are 
concentrated between T=O and T=50 for y-0.85 and between T=50 and T= 100 for yo.86. The 
out-of-phase pattern was also seen qualitatively in the experiments of Bowand and Ho. For 
the patterns in the mid-section of the mixing layer, yo,  fairly stable fluctuations are calculated, 
with a dominance by the positive momentum flux, which also agrees with the experimental 
measurements. 

In an experiment with a round jet, Lau and Fisher’ reported a series of upward and downward 
spikes in their hot-wire signals at r / D  = 0.6 and r / D  = 0.4 respectively. ( D  is the diameter of the jet 
exit and r is the distance along the radial direction.) The signals were taken at the downstream 
location x/d = 2. Note that r / D  = 0.6 is on the low-speed side of the mixing layer in the round jet 
while r / D  = 0.4 is on the high-speed side. The mixing layer in the round jet is also believed to be 
dominated by large-scale structures.I5 

In Figure 8 all calculated axial velocities across the mixing layer at X = 160 are displayed 

Time, T 

Figure 8. Time history of uju’ at X = 160 across the mixing layer. Dashed lines are used to show the instants when large- 
scale structures pass X =  160 
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together for examining the characteristics of the flow field. It is clearly seen that downward spikes 
(negative in value) are associated with the low-speed side of the mixing layer and upward spikes 
(positive) with the high-speed side, similar to the results of Lau and Fisher.2 Acton" first 
demonstrated that variations of the transverse velocity are a good indication of the passage of a 
large-scale structure through a downstream location. She found that there is a distinct trough in 
the axial velocity followed immediately by a crest as the centre of the large-scale structure passes 
the downstream location. Browand the Weidman"j also demonstrated in their hot-wire measure- 
ment for a mixing layer that there is a definite combination of a trough and a crest during the 
passage of a large-scale structure. Based on the variations in the u-component of the velocity, we 
can thus predict the presence of large-scale structures. In Figures 8 and 9 the vertical dashed lines 
represent the instant at  which the centre of a large-scale structure passes the X = 160 location. 
There is a definite correlation (without any exception) that a vertical dashed line is always 
bounded by a trough on the left and a crest on the right for the u-component, but for the u- 
component the relationship is not conclusive. In general, the vertical dahsed lines are associated 
with a negative peak on the low-speed side and with a positive peak on the high-speed side. Based 
on Figure 9, it is estimated that on average a large-scale structure passes X = 160 every 50 time 
steps (AT= 5). Browand and Ho3 observed that the turbulent momentum fluxes which contribute 
mainly to the Reynolds stress occur in bursts of duration comparable to the passage period of a 
large-scale structure. Their observation is confirmed by our simulation through Figure 7(c) that 
there is a burst about every 50 time steps in the time history plot of the turbulent momentum flux 
- uu/( - u'u') at yo.  The mid-section of a mixing layer is always a good sampling point because 
every large-scale structure will definitely make its passage felt at this cross-stream point. 

The probability density function of the fluctuating turbulent quantities, n / N ,  where n is the 
number of observations that fall within a certain range and N is the total observations (which is 

2 0  4 0  8 0  1 0 0  

Time, T 

Figure 9. Time history of vjv' at X = 160 across the mixing layer. Dashed lines are used to show the instants when large- 
scale structures pass X = 160 
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u/u' 

Figure 10. Probability distributions of -uu/(-u'o'), UJU' and u/u' at X =  140 

1000 in this analysis), is given in Figures 1&12 for the turbulent momentum transport quantities 
at downstream locations X =  140, 160 and 180 respectively. Again, similarity exists for all three 
downstream locations. In general, most of the probability density functions exhibit a Gaussian- 
like profile, with a few exceptions on the low-speed side of the u-component which are rather 
irregular. For the turbulent momentum flux there exists a small skew toward the positive value of 
- uu/( - u'u') for the low-speed side of the mixing layer. For the u-component the peak is shifted 
slightly toward the negative value of v/u' for the high-speed side of the mixing layer. 

CONCLUSIONS 

In this study a discrete vortex method was used to simulate the turbulent transport phenomena in 
a two-dimensional turbulent plane mixing layer. As the main contributions of the study, the 
instantaneous turbulent momentum fluxes and the instantaneous velocity fluctuations were 
presented and compared with available experimental measurements. 

For all the quantities examined, similarity exists for the three downstream locations. An 
important feature discovered in the experiments of Browand and H o , ~  that the bulk of the 
turbulent momentum flux at the outer extremities of the mixing layer appears to be constructed 
from a series of infrequent large-amplitude spikes, is confirmed by the current numerical 
simulation. We also confirm that on the low-speed side of the mixing layer these large infrequent 
fluxes are caused exclusively by high-momentum fluid transported downward from the high-speed 
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Figure 11. Probability distributions of -uv/(-u'u'), u/u' and u/v' at X=160 
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Figure 12. Probability distributions of -uv/(-u'v'), u/u' and v/v' at X =  180 
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side, and that low-momentum fluid entering the high-speed side from the low-speed side also 
affects the turbulent flux in the high-speed region. 

Based on the numerical simulations, it is found that the fluctuating activities are out of phase 
between the low-speed and high-speed sides. 

The current study also confirms the consistent downward and upward spikes in the axial 
fluctuating velocities of the mixing layer which were observed in the hot-wire signals of Lau and 
Fisher' for a round jet. 

The calculations also show a definite correlation between the passage of a large-scale structure 
and a burst in turbulent momentum flux. The average passage period of a large-scale structure is 
calculated to be around 50 time steps. The 'vortex pairing' process in the mixing layer does not 
produce any special variations in the momentum flux history. 

The probability density functions associated with these fluctuating quantities mostly show 
Gaussian-like distributions, with a few exceptions in the u-component velocity on the low-speed 
side. A small skew was found in the turbulent momentum on the low-speed side. The peak of the 
density function shifts slightly toward the negative value of the v-component of the velocity on the 
high-speed side. 
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APPENDIX: NOMENCLATURE 

unit length scale 
spacing of vortex array 
number of upstream vortex array 
flow Reynolds number 
distance from the centre of the vortex blob 
dimensionless round jet radius (D =jet diameter, r = jet radius) 
new dimensionless time (= T - 120) 
dimensional time 
free stream velocity on the high-speed side of the mixing layer 
free stream velocity on the low-speed side of the mixing layer 
unit velocity 
dimensionless velocity (= uI/uc) 
dimensionless velocity (= u2/uc) 
characteristic velocity ( = * ( u ,  + u z ) )  
nth vortex element transport velocity 
time-averaged dimensionless velocity component 
turbulent fluctuation components defined in equation (1 5) 
turbulent intensity components 
Reynolds stress 
turbulent momentum flux 
complex potential defined in equation (6) 
Centre position of nth vortex element 
starting point of the mixing layer 
lateral location where time-averaged velocity is equal to U c  



Greek symbols 

AM 
A U  
At 
AT 

?I 
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e(x) 
r 
Y 
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lateral location according to the value of y 
complex ca-ordinate (= X + i Y )  
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free stream velocity ratio (= U, /U, )  
velocity difference ( = u l  -uZ)  
dimensionless velocity difference (= U ,  - U , )  
dimensional time step size 
dimensionless time step size 
vorticity thickness 
similarity variable defined in equation (1 1) 
momentum thickness defined in equation (12) 
vortex strength per unit length of the vortex sheet 
scale used to define the location across the mixing layer based on the 
magnitude of time-averaged velocity 
input parameter ( = ( U ,  - U2)/( U ,  + U , ) )  
fluid dynamic viscosity 
fluid kinematic viscosity 
stream function 
fluid density 
cut-off radius of a vortex core 
dimensionless time 
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